MULTIPLE CHOICE REVIEW – UNIFORM CIRCULAR MOTION (Dynamics Part 2)

Multiple Choice

1. A ball is fastened to a string and is swung in a vertical circle. When the ball is at the highest point of the circle its velocity and acceleration directions are:

 (A) \[\vec{v} \]
 (B) \[\vec{a} \]
 (C) \[\vec{v} \]
 (D) \[\vec{a} \]

2. A ball with a mass \(m \) is fastened to a string and is swung in a vertical circle. When the ball is at the highest point of the circle the tension in the string is:

 (A) \(mg \) \((B) \ mg + ma \) \((C) \ ma -mg \) \((D) \ mg/ma \)

3. An object, shown in the accompanying figure, moves in uniform circular motion. Which arrow best depicts the net force acting on the object at the instant shown?

 (A) A \((B) \ B \) \((C) \ C \) \((D) \ D \)

4. A motorcyclist moves at a constant speed down one hill and up another hill along the smooth curved surface. When the motorcyclist reaches the lowest point of the curve its velocity and acceleration directions are:

 (A) \[\vec{v} \]
 (B) \[\vec{a} \]
 (C) \[\vec{v} \]
 (D) \[\vec{a} \]

5. A car moves along the curved track. What is the apparent weight of the driver when the car reaches the lowest point of the curve?

 (A) \(mg \) \((B) \ mg + ma \) \((C) \ ma -mg \)
 \((D) \ mg/ma \)
6. A car moves along the curved track. What is the direction of F_N of the driver when the car reaches the lowest point of the curve?
(A) Upward (B) Downward (C) Forward (D) Backward

7. A car is traveling on a road in hilly terrain, see figure above. Assume the car has speed v and the tops and bottoms of the hills have radius of curvature R. The driver of the car is most likely to feel weightless:
(A) at the top of a hill when $v = \sqrt{gR}$
(B) at the bottom of a hill when $v > \sqrt{gR}$
(C) going down a hill when $v = \sqrt{gR}$
(D) at the top of a hill when $v < \sqrt{gR}$

Questions 8-9

A 0.2 kg ball rotates at a constant speed of 3 m/s on the end of 1.2 m long string. The string describes a horizontal circle.

8. What is the centripetal acceleration of the object?
(A) 1.2 m/s2 (B) 3.0 m/s2 (C) 7.5 m/s2 (D) 3.2 m/s2

9. What is the centripetal force exerted on the object?
(A) 1.0 N (B) 1.2 N (C) 0.2 N (D) 1.5 N

10. When a student stands on a rotating table, the frictional force exerted on the student by the table is
(A) greater in magnitude than the frictional force exerted on the table by the student
(B) less in magnitude than the frictional force exerted on the table by the student
(C) equal in magnitude than the frictional force exerted on the table by the student
(D) directed away from the center of the table

11. A child whirls a ball at the end of a rope, in a uniform circular motion. Which of the following statements is NOT true?
(A) The speed of the ball is constant.
(B) The velocity of the ball is constant.
(C) The radius is constant
(D) The magnitude of the ball’s acceleration is constant.
12. The horizontal table rotates at a constant speed. As viewed from above, a coin on the table moves counterclockwise in a circle. Which of the following vectors best represents the direction of the frictional force exerted on the coin by the table when the coin is in the position shown?

![View from Above]

(A) ← (B) → (C) ↓ (D) ↑

13. A centripetal force F is applied to an eraser moving at a constant speed v in a horizontal circle of radius r. If the same force is applied, but the radius is halved, what happens to the speed of the eraser?

(A) Increased by a factor of 2
(B) decreased by a factor of 2
(C) increased by a factor of $\sqrt{2}$
(D) decreased by a factor of $\sqrt{2}$

14. A centripetal force F is applied to an object moving at a constant speed v in a horizontal circle of radius r. If the radius is quadrupled and the speed is doubled, what happens to the centripetal force?

(A) Increased by a factor of 2
(B) decreased by a factor of 2
(C) doesn’t change
(D) increased by a factor of $\sqrt{2}$

Questions 15-17

The diagram below is a snapshot of three cars all moving counterclockwise during a one lap race on an elliptical track.

![Start/Finish Line]

15. Which car, at the moment of the snapshot, has the smallest displacement?

(A) car A (B) car B (C) car C (D) all three cars have the same displacement

16. Which car at the moment of the snapshot must have non-zero acceleration?

(A) car A (B) car B (C) car C (D) all three cars have non-zero acceleration

17. Which car can at the moment of the snapshot must have a centripetal force directed to the center of the center of the curvature?

(A) car A (B) car B (C) car C (D) all three cars must have the centripetal force directed to the center of the curvature
18. A roller coaster car is on a track that forms a circular loop of radius R in the vertical plane. If the car is to just maintain contact with track at the top of the loop, what is the minimum value for its velocity at this point?

 (A) gR (B) 0.5gR (C) 2gR (D) (gR)\(^{1/2}\)

19. A coin rests on a turntable a distance r from the axis of rotation. The turntable rotates with a constant speed of v. What is the minimum coefficient of static friction between the turntable and the coin?

 (A) v\(^2\)rg (B) v\(^2\)/rg (C) rg/v\(^2\) (D) v\(^2\)/r

20. A car goes around a curve of radius r at a constant speed v. The coefficient of static friction between the tires and the surface is µ. What is the maximum value of the car’s velocity in order to prevent car from skidding of the road?

 (A) µ rg (B) µ r/g (C) (µrg)\(^{1/2}\) (D) g/µr

21. An object m is tied to one end of a string, moves in a circle with a constant speed v on a horizontal frictionless table. The second end of the string is connected to a big mass M and goes through a small hole in the table. What is the value of M if it stays in equilibrium?

 (A) mv\(^2\)/rg (B) v\(^2\)/rmg (C) rg/mv\(^2\) (D) mv\(^2\)/g

22. A heavy (2.0 kg) point-like object rests 2.0m from the center of a rough turntable as the turntable rotates. The period of the turntable’s rotation is 5.0 seconds. The coefficient of kinetic friction between the object and turntable is 0.50, while the coefficient of static friction is 0.80. What is the magnitude of the force of friction acting on the object?

 (A) 19.6N (B) 16.0N (C) 9.8N (D) 6.3N

23. Two identical cars, one on the moon and one on Earth, are rounding banked curves at the same speed with the same radius and different angles. The acceleration due to gravity on the moon is 1/6 that of Earth. How do the centripetal accelerations of each car compare?

 A) The centripetal acceleration of the car on Earth is less than that on the moon.
 B) The centripetal acceleration of the car on Earth is greater than that on the moon.
 C) The centripetal accelerations are the same for both cars.
 D) This cannot be determined without knowing the radius and the angle.
Multi-Correct Questions

Directions: For each of the following, two of the suggested answers will be correct. Select the best two choices to earn credit. No partial credit will be earned if only one correct choice is selected.

24. Four particles have the following masses (in terms of m), speeds (in terms of v), and radii (in terms of r). Which two particles have the same centripetal force?

<table>
<thead>
<tr>
<th>Particle</th>
<th>Mass</th>
<th>Speed</th>
<th>Radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>m</td>
<td>v</td>
<td>r</td>
</tr>
<tr>
<td>2</td>
<td>m/2</td>
<td>2v</td>
<td>2r</td>
</tr>
<tr>
<td>3</td>
<td>2m</td>
<td>v/2</td>
<td>r</td>
</tr>
<tr>
<td>4</td>
<td>m</td>
<td>2v</td>
<td>3r</td>
</tr>
</tbody>
</table>

(A) Particle 1
(B) Particle 2
(C) Particle 3
(D) Particle 4

25. A stone is tied to a string and whirled in a vertical circle at a radius. Which of the following cannot be true?

(A) The string is most likely to break at the bottom of the circle.
(B) The tension force is the same everywhere in the circle.
(C) The tension force and the weight of the stone always affect the centripetal force.
(D) The tension is the least when the stone is at the top of the circle.
Multiple Choice Answers

1. B
2. C
3. B
4. C
5. B
6. A
7. A
8. C
9. D
10. C
11. B
12. C
13. D
14. C
15. A
16. D
17. D
18. D
19. B
20. C
21. A
22. D
23. C
24. A, B
25. B, C